Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Mr-Guided Attenuation Map for Prostate Pet-Mri: An Intensity and Morphologic-Based Segmentation Approach for Generating a Five-Class Attenuation Map in Pelvic Region Publisher Pubmed



Shandiz MS1, 2 ; Rad HS1, 2 ; Ghafarian P3, 4 ; Karam MB3, 4 ; Akbarzadeh A2 ; Ay MR1, 2
Authors

Source: Annals of Nuclear Medicine Published:2017


Abstract

Purpose: Prostate imaging is one of the major application of hybrid PET/MRI systems. Inaccurate attenuation maps (µ-maps) derived by direct segmentation (SEG) in which the cortical bone is ignored and the volume of the air in cavities is underestimated is the main challenge of commercial PET/MRI systems for the quantitative analysis of the pelvic region. The present study considered the cortical bone and air cavity along with soft tissue, fat, and background air in the µ-map of the pelvic region using a method based on SEG. The proposed method uses a dedicated imaging technique that increases the contrast between regions and a hybrid segmentation method to classify MR images based on intensity and morphologic characteristics of tissues, such as symmetry and similarity of bony structures. Procedures: Ten healthy volunteers underwent MRI and ultra-low dose CT imaging. The dedicated MR imaging technique uses the short echo time (STE) based on the conventional sequencing implemented on a clinical 1.5T MRI scanner. The generation of a µ-map comprises the following steps: (1) bias field correction; (2) hybrid segmentation (HSEG), including segmenting images into clusters of cortical bone-air, soft tissue, and fat using spatial fuzzy c-means (SFCM), and separation of cortical bone and internal air cavities using morphologic characteristics; (3) the active contour approach for the separation of background air; and (4) the generation of a five-class μ-map for cortical bone, internal air cavity, soft tissue, fat tissue, and background air. Validation was done by comparison with segmented CT images. Results: The Dice and sensitivity metrics of cortical bone structures and internal air cavities were 72 ± 11 and 66 ± 13 and 73 ± 10 and 68 ± 20 %, respectively. High correlation was observed between CT and HSEG-based µ-maps (R2 > 0.99) and the corresponding sinograms (R2 > 0.98). Conclusions: Currently, pelvis µ-maps provided by the current PET/MRI systems and the ultra-short echo time and atlas-based methods tend to be inaccurate. The proposed method acceptably generated a five-class μ-map using only one image. © 2016, The Japanese Society of Nuclear Medicine.
Other Related Docs
13. Design, Optimization and Performance Evaluation of Bm-Pet: A Simulation Study, Nuclear Instruments and Methods in Physics Research# Section A: Accelerators# Spectrometers# Detectors and Associated Equipment (2019)