Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Role of Gamma Irradiation and Disaccharide Trehalose to Induce Immune Responses in Syrian Hamster Model Against Iranian Sars-Cov-2 Virus Isolate Publisher



Motamedisedeh F1 ; Khorasani A2 ; Lotfi M2 ; Moosavi SM1, 3 ; Arbabi A4 ; Hosseini SM4
Authors

Source: Veterinary Research Forum Published:2024


Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster. The SARS-CoV-2 virus was isolated from tracheal swabs, confirmed by real-time polymerase chain reaction (RT-PCR), and propagated on Vero cells. For inactivation, it was irradiated with 14.00 kGy gamma radiation. Evaluation of the antigenic properties of the spike protein subunit S1 showed that the antigens were intact after gamma irradiation. The gamma-irradiated and formalin-treated viruses were used to immunize hamsters in four vaccine formulations. Neutralizing antibodies increased significantly in all vaccinated groups three weeks after the second and third vaccinations. The concentration of secretory immunoglobulin A in the irradiated vaccine plus trehalose increased significantly in nasal lavage and nasopharyngeal-associated lymphoid tissue fluids three weeks after the second and third vaccinations. The lymphocyte proliferation test in the spleen showed a significant increase in all vaccinated hamsters, but the increase was greater in irradiated vaccine plus trehalose and irradiated vaccine plus alum. We can recommend the irradiated inactivated vaccine SARS-CoV-2 plus trehalose (intra-nasal) and another irradiated inactivated vaccine SARS-CoV-2 plus alum (subcutaneous) as safe vaccines against coronavirus disease of 2019 (COVID-19), which can stimulate mucosal, humeral, and cellular immunities. However, the protectivity of the vaccine against COVID-19 in vaccinated hamsters must be investigated in a challenge test to assess the potency and efficiency of vaccine. © 2024, Urmia University - Faculty of Veterinary Medicine. All rights reserved.
Other Related Docs
5. Covid-19: A Review on Treatment Strategies and Candidate Vaccines, Scientific Journal of Kurdistan University of Medical Sciences (2021)
9. Covid-19: Significance of Antibodies, Human Antibodies (2020)
11. The Immunologic Basis of Covid-19: A Clinical Approach, Journal of Cellular and Molecular Anesthesia (2020)
12. Serological Tests for Covid-19: Potential Opportunities, Cell Biology International (2021)
18. Immune-Based Therapy for Covid-19, Advances in Experimental Medicine and Biology (2021)
19. Breakthrough Sars-Cov-2 Infections After Vaccination: A Critical Review, Human Vaccines and Immunotherapeutics (2022)