Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Resveratrol-Loaded Polyurethane Nanofibrous Scaffold: Viability of Endothelial and Smooth Muscle Cells Publisher Pubmed



Asadpour S1, 2, 3 ; Yeganeh H4 ; Khademi F5 ; Ghanbari H6, 7 ; Ai J3, 8
Authors

Source: Biomedical Materials (Bristol) Published:2020


Abstract

Acellular small-caliber tissue-engineered vascular grafts (SCTEVGs) have low patency rate due to complications including thrombosis and intimal hyperplasia. Rapid endothelialization, antithrombosis and antiproliferation approaches are suitable for dispelling these complications. Nevertheless, common antithrombosis and antiproliferation techniques are usually incompatible with rapid endothelialization on vascular grafts. To overcome these obstacles, we developed nanofibrous polyurethane scaffolds loaded with resveratrol drug, which is a natural compound extracted from plants and shows multifaceted effects in cardiovascular protection. It was found that the tensile strength and Young's modulus in modified scaffolds were significantly increased by resveratrol loading into membranes. The tensile strengths and breaking strains of resveratrol-loaded scaffolds were close to that of native vessels. The resveratrol release profile from the nanofibrous scaffolds occurred in a sustained manner. The anti-thrombogenicity of resveratrol-loaded nanofibers increased compared to polyurethane alone, with the result that prolonged human blood clotting time and lower hemolysis were detected on these scaffolds. The viability of human umbilical vein endothelial cells and smooth muscle cells on resveratrol-loaded scaffolds was evaluated. Our findings demonstrated that resveratrol-loaded nanofibers resulted in not only appropriate antithrombotic properties, but the formation of a monolayer of endothelial cells on the scaffold surface and lower smooth muscle cell growth. These resveratrol-loaded nanofibers are suggested as potential scaffolds for SCTEVGs. © 2019 IOP Publishing Ltd.
Other Related Docs