Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Identifying Optimal Features From Heart Rate Variability for Early Detection of Sepsis in Pediatric Intensive Care Publisher Pubmed



Amiri P1 ; Derakhshan A2 ; Gharib B3 ; Liu YH4 ; Mirzaaghayan M3
Authors

Source: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society# EMBS Published:2019


Abstract

Sepsis as bacterial infection is the most common and costly causes of mortality in critically ill patients. The early diagnosis of sepsis is significantly important for effective treatment. In this study, over a period of two years, the electrocardiogram of nearly 500 pediatric and neonate patients with heart diseases were collected in 24 hours before diagnosis. The collected data of 22 patients were studied including 11 sepsis patients with positive blood cultures and 11 non-sepsis patients. After extracting the HRV (Heart Rate Variability) signal, 28 linear and nonlinear features according to previous research were extracted. By using the relative entropy method as a feature selection technique, the extracted features were evaluated for their ability to discriminate the data in sepsis and non-sepsis groups, and the best features were entered into the classification process. Using the four classification models of SVM, LDA, KNN and Decision Tree, the accuracy of 86.36% was obtained with Decision Tree for discrimination of sepsis patients from other patients. © 2019 IEEE.
Other Related Docs
9. Comparing Performance of Data Mining Algorithms in Prediction Heart Diseses, International Journal of Electrical and Computer Engineering (2015)
11. Designing Predictive Models for Appraisal of Outcome of Neurosurgery Patients Using Machine Learning-Based Techniques, Interdisciplinary Neurosurgery: Advanced Techniques and Case Management (2023)
14. Developing an Apnea/Hypopnea Diagnostic Model Using Svm, Frontiers in Health Informatics (2021)