Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis With Forecasts to 2050 Publisher Pubmed



Naghavi M1, 2 ; Vollset SE1, 2, 9 ; Ikuta KS1, 11 ; Swetschinski LR1 ; Gray AP1 ; Wool EE1 ; Robles Aguilar G12 ; Mestrovic T1, 20 ; Smith G1 ; Han C1 ; Hsu RL1 ; Chalek J1 ; Araki DT1, 21 ; Chung E1, 3 Show All Authors
Authors
  1. Naghavi M1, 2
  2. Vollset SE1, 2, 9
  3. Ikuta KS1, 11
  4. Swetschinski LR1
  5. Gray AP1
  6. Wool EE1
  7. Robles Aguilar G12
  8. Mestrovic T1, 20
  9. Smith G1
  10. Han C1
  11. Hsu RL1
  12. Chalek J1
  13. Araki DT1, 21
  14. Chung E1, 3
  15. Raggi C1
  16. Gershberg Hayoon A1
  17. Davis Weaver N1
  18. Lindstedt PA1
  19. Smith AE1
  20. Altay U10
  21. Bhattacharjee NV1
  22. Giannakis K9
  23. Fell F13
  24. Mcmanigal B12
  25. Ekapirat N12
  26. Mendes JA12
  27. Runghien T1, 12
  28. Srimokla O12, 14
  29. Abdelkader A22
  30. Abdelsalam S25
  31. Aboagye RG26
  32. Abolhassani H28, 35
  33. Abualruz H36
  34. Abubakar U37
  35. Abukhadijah HJ38
  36. Aburuz S39, 41
  37. Abuzaid A42, 43
  38. Achalapong S44
  39. Addo IY45, 51
  40. Adekanmbi V53
  41. Adeyeoluwa TE54, 57
  42. Adnani QES60
  43. Adzigbli LA27
  44. Afzal MS61
  45. Afzal S62, 63
  46. Agodi A64
  47. Ahlstrom AJ1, 4
  48. Ahmad A65
  49. Ahmad S66, 67
  50. Ahmad T68
  51. Ahmadi A69, 71
  52. Ahmed A74, 76
  53. Ahmed H78
  54. Ahmed I79, 81
  55. Ahmed M82
  56. Ahmed S84
  57. Ahmed SA85
  58. Akkaif MA86
  59. Al Awaidy S87, 88
  60. Al Thaher Y89, 91
  61. Alalalmeh SO23
  62. Albataineh MT92
  63. Aldhaleei WA93
  64. Algheethi AAS94, 95
  65. Alhaji NB96
  66. Ali A97
  67. Ali L84
  68. Ali SS98
  69. Ali W99
  70. Allel K15, 100
  71. Almarwani S103, 104
  72. Alrawashdeh A105
  73. Altaf A108
  74. Altammemi AB110, 111
  75. Altawfiq JA112, 113
  76. Alzoubi KH106, 114
  77. Alzyoud WA120
  78. Amos B122
  79. Amuasi JH123, 124
  80. Ancuceanu R125
  81. Andrews JR129
  82. Anil A132, 135
  83. Anuoluwa IA55
  84. Anvari S136
  85. Anyasodor AE138
  86. Apostol GLC139, 140
  87. Arabloo J141
  88. Arafat M147
  89. Aravkin AY1, 2, 4
  90. Areda D148, 149
  91. Aremu A150
  92. Artamonov AA153
  93. Ashley EA12, 156
  94. Asika MO157, 158
  95. Athari SS159
  96. Atout MMW90
  97. Awoke T160
  98. Azadnajafabad S29, 163
  99. Azam JM164, 168
  100. Aziz S169
  101. Azzam AY170, 171
  102. Babaei M30, 130
  103. Babin FX173
  104. Badar M174
  105. Baig AA175
  106. Bajcetic M176, 178
  107. Baker S179
  108. Bardhan M182
  109. Barqawi HJ115
  110. Basharat Z80
  111. Basiru A151
  112. Bastard M184
  113. Basu S185
  114. Bayleyegn NS186
  115. Belete MA187
  116. Bello OO55
  117. Beloukas A189, 190
  118. Berkley JA16, 192
  119. Bhagavathula AS93, 194
  120. Bhaskar S195, 196
  121. Bhuyan SS197
  122. Bielicki JA77, 198
  123. Briko NI200
  124. Brown CS201, 202
  125. Browne AJ13
  126. Buonsenso D205, 206
  127. Bustanji Y116, 207
  128. Carvalheiro CG208, 209
  129. Castanedaorjuela CA210, 211
  130. Cenderadewi M213, 214
  131. Chadwick J215
  132. Chakraborty S216
  133. Chandika RM217
  134. Chandy S220
  135. Chansamouth V154, 221
  136. Chattu VK222, 223
  137. Chaudhary AA224
  138. Ching PR225
  139. Chopra H226
  140. Chowdhury FR227
  141. Chu DT228
  142. Chutiyami M229
  143. Cruzmartins N230, 231
  144. Da Silva AG234
  145. Dadras O31, 235
  146. Dai X1, 2
  147. Darcho SD83
  148. Das S238
  149. De La Hoz FP212
  150. Dekker DM239
  151. Dhama K241
  152. Diaz D242
  153. Dickson BFR46, 243
  154. Djorie SG244
  155. Dodangeh M142
  156. Dohare S218
  157. Dokova KG245
  158. Doshi OP247
  159. Dowou RK27
  160. Dsouza HL250, 251
  161. Dunachie SJ16, 252
  162. Dziedzic AM253
  163. Eckmanns T255
  164. Eddra A256
  165. Eftekharimehrabad A257, 258
  166. Ekundayo TC55
  167. El Sayed I259
  168. Elhadi M261, 262
  169. Elhuneidi W117
  170. Elias C263, 265
  171. Ellis SJ266
  172. Elsheikh R268
  173. Elsohaby I270, 272
  174. Eltaha C273
  175. Eshrati B143
  176. Eslami M274, 275
  177. Eyre DW15
  178. Fadaka AO276, 277
  179. Fagbamigbe AF58, 279
  180. Fahim A280
  181. Fakhridemeshghieh A281
  182. Fasina FO282, 283
  183. Fasina MM284
  184. Fatehizadeh A287
  185. Feasey NA288, 289
  186. Feizkhah A137
  187. Fekadu G271, 290
  188. Fischer F285
  189. Fitriana I291
  190. Forrest KM292
  191. Fortuna Rodrigues C232, 233
  192. Fuller JE1
  193. Gadanya MA293, 294
  194. Gajdacs M295
  195. Gandhi AP296
  196. Garciagallo EE17, 297
  197. Garrett DO298, 431, 432
  198. Gautam RK299
  199. Gebregergis MW300
  200. Gebrehiwot M188
  201. Gebremeskel TG302, 303
  202. Geffers C286
  203. Georgalis L304
  204. Ghazy RM260, 305
  205. Golechha M306
  206. Golinelli D307, 308
  207. Gordon M309
  208. Gulati S310
  209. Gupta RD312, 313
  210. Gupta S314
  211. Gupta VK315
  212. Habteyohannes AD161
  213. Haller S254, 316
  214. Harapan H317
  215. Harrison ML50, 318
  216. Hasaballah AI319
  217. Hasan I165, 320
  218. Hasan RS321
  219. Hasani H144
  220. Haselbeck AH323
  221. Hasnain MS327
  222. Hassan II236, 328, 329
  223. Hassan S237
  224. Hassan Zadeh Tabatabaei MS32
  225. Hayat K330, 331
  226. He J1
  227. Hegazi OE23
  228. Heidari M70
  229. Hezam K332, 333
  230. Holla R248
  231. Holm M324
  232. Hopkins H167
  233. Hossain MM334, 335
  234. Hosseinzadeh M336, 337
  235. Hostiuc S126, 338
  236. Hussein NR339
  237. Huy LD340, 341
  238. Ibanezprada ED343
  239. Ikiroma A344
  240. Ilic IM177
  241. Islam SMS47, 345
  242. Ismail F346, 347
  243. Ismail NE348, 349
  244. Iwu CD5
  245. Iwujaja CJ350, 351
  246. Jafarzadeh A352, 354
  247. Jaiteh F355
  248. Jalilzadeh Yengejeh R356
  249. Jamora RDG357, 358
  250. Javidnia J359
  251. Jawaid T360
  252. Jenney AWJ361
  253. Jeon HJ181, 326
  254. Jokar M362, 363
  255. Jomehzadeh N364, 365
  256. Joo T366, 367
  257. Joseph N368
  258. Kamal Z369, 370
  259. Kanmodi KK371, 372
  260. Kantar RS373, 374
  261. Kapisi JA121
  262. Karaye IM375, 376
  263. Khader YS107
  264. Khajuria H377
  265. Khalid N378
  266. Khamesipour F145, 379
  267. Khan A380
  268. Khan MJ381
  269. Khan MT369
  270. Khanal V382, 383
  271. Khidri FF384
  272. Khubchandani J385
  273. Khusuwan S44
  274. Kim MS386, 388
  275. Kisa A389, 390
  276. Korshunov VA200
  277. Krapp F391, 393
  278. Krumkamp R240
  279. Kuddus M394
  280. Kulimbet M395, 396
  281. Kumar D397
  282. Kumaran EAP12
  283. Kuttikkattu A398
  284. Kyu HH1, 2
  285. Landires I399, 400
  286. Lawal BK401
  287. Le TTT403
  288. Lederer IM404
  289. Lee M405
  290. Lee SW406
  291. Lepape A264
  292. Lerango TL407
  293. Ligade VS249
  294. Lim C1, 12, 408
  295. Lim SS2
  296. Limenh LW409
  297. Liu C411
  298. Liu X311, 387
  299. Liu X311, 387
  300. Loftus MJ416, 417
  301. Amin HIM418, 419
  302. Maass KL1
  303. Maharaj SB420, 421
  304. Mahmoud MA422
  305. Maikanticharalampous P423
  306. Makram OM172, 424
  307. Malhotra K425, 426
  308. Malik AA427
  309. Mandilara GD191
  310. Marks F180, 325
  311. Martinezguerra BA429
  312. Masoumiasl H146
  313. Mathioudakis AG433, 434
  314. May J240, 435
  315. Mchugh TA1
  316. Meiring J436
  317. Meles HN301
  318. Melese A160, 438
  319. Melese EB410
  320. Minervini G439, 440
  321. Mohamed NS444, 445
  322. Mohammed S446, 449
  323. Mohan S219, 450
  324. Mokdad AH1, 2
  325. Monasta L451
  326. Moodi Ghalibaf A452
  327. Moore CE199
  328. Moradi Y453
  329. Mossialos E203, 455
  330. Mougin V1
  331. Mukoro GD456
  332. Mulita F457, 458
  333. Mullerpebody B460
  334. Murillozamora E461, 462
  335. Musa S447
  336. Musicha P463
  337. Musila LA192, 464
  338. Muthupandian S441, 465
  339. Nagarajan AJ466, 467
  340. Naghavi P468
  341. Nainu F469
  342. Nair TS470
  343. Najmuldeen HHR471
  344. Natto ZS428, 472
  345. Nauman J40, 473
  346. Nayak BP377
  347. Nchanji GT474, 475
  348. Ndishimye P476, 477
  349. Negoi I127, 478
  350. Negoi RI128, 479
  351. Nejadghaderi SA353, 480
  352. Nguyen QP1
  353. Noman EA48, 481
  354. Nwakanma DC166, 482
  355. Obrien S267
  356. Ochoa TJ392
  357. Odetokun IA152
  358. Ogundijo OA59
  359. Ojoakosile TR483
  360. Okeke SR50, 51
  361. Okonji OC278
  362. Olagunju AT484, 485
  363. Olivasmartinez A6, 430
  364. Olorukooba AA448
  365. Olwoch P122
  366. Onyedibe KI486
  367. Ortizbrizuela E429, 487
  368. Osuolale O488
  369. Ounchanum P44
  370. Oyeyemi OT56
  371. Padukudru PAM489
  372. Paredes JL391
  373. Parikh RR490
  374. Patel J269, 491
  375. Patil S442, 492
  376. Pawar S414
  377. Peleg AY416, 493
  378. Peprah P494
  379. Perdigao J495
  380. Perrone C18, 408
  381. Petcu IR496
  382. Phommasone K154
  383. Piracha ZZ497
  384. Poddighe D498, 499
  385. Pollard AJ19, 500
  386. Poluru R501
  387. Poncedeleon A429
  388. Puvvula J502
  389. Qamar FN322
  390. Qasim NH504
  391. Rafai CD244
  392. Raghav P133
  393. Rahbarnia L505
  394. Rahim F506, 507
  395. Rahimimovaghar V32
  396. Rahman M412
  397. Rahman MA508, 509
  398. Ramadan H510
  399. Ramasamy SK131
  400. Ramesh PS503
  401. Ramteke PW512, 513
  402. Rana RK514
  403. Rani U515
  404. Rashidi MM29, 72
  405. Rathish D516
  406. Rattanavong S518
  407. Rawaf S204, 519
  408. Redwan EMM520, 521
  409. Reyes LF297, 342
  410. Roberts T16, 155
  411. Robotham JV459
  412. Rosenthal VD183
  413. Ross AG138
  414. Roy N522
  415. Rudd KE523
  416. Sabet CJ524
  417. Saddik BA52, 118
  418. Saeb MR525
  419. Saeed U526, 527
  420. Saeedi Moghaddam S29, 528
  421. Saengchan W44
  422. Safaei M529
  423. Saghazadeh A28
  424. Saheb Sharifaskari N115
  425. Sahebkar A443, 530
  426. Sahoo SS532
  427. Sahu M1
  428. Saki M364
  429. Salam N533
  430. Saleem Z535
  431. Saleh MA118, 511
  432. Samodra YL536, 537
  433. Samy AM538, 539
  434. Saravanan A134, 540
  435. Satpathy M541, 543
  436. Schumacher AE1
  437. Sedighi M454
  438. Seekaew S44
  439. Shafie M33
  440. Shah PA544
  441. Shahid S108, 109
  442. Shahwan MJ24
  443. Shakoor S321
  444. Shalev N1
  445. Shamim MA132
  446. Shamshirgaran MA545
  447. Shamsi A24, 534
  448. Sharifan A34, 546
  449. Shastry RP547
  450. Shetty M548
  451. Shittu A549
  452. Shrestha S550
  453. Siddig EE75, 551
  454. Sideroglou T552
  455. Sifuentesosornio J553
  456. Silva LMLR554, 555
  457. Simoes EAF556, 557
  458. Simpson AJH12, 558
  459. Singh A559, 560
  460. Singh S132
  461. Sinto R561, 562
  462. Soliman SSM119
  463. Soraneh S563
  464. Stoesser N12, 565
  465. Stoeva TZ246, 566
  466. Swain CK542
  467. Szarpak L567, 568
  468. Sree Sudha TY569
  469. Tabatabai S73
  470. Tabche C204
  471. Taha ZMA570
  472. Tan KK571
  473. Tasak N572
  474. Tat NY574, 575
  475. Thaiprakong A573
  476. Thangaraju P576
  477. Tigoi CC193, 577
  478. Tiwari K132
  479. Tovanipalone MR440
  480. Tran TH403, 578
  481. Tumurkhuu M579
  482. Turner P16, 580
  483. Udoakang AJ56
  484. Udoh A581
  485. Ullah N369
  486. Ullah S582
  487. Vaithinathan AG583
  488. Valenti M584, 585
  489. Vos T1, 2
  490. Vu HTL586
  491. Waheed Y587, 588
  492. Walker AS12, 101
  493. Walson JL7
  494. Wangrangsimakul T12, 564
  495. Weerakoon KG517
  496. Wertheim HFL589
  497. Williams PCM49, 590
  498. Wolde AA1, 591
  499. Wozniak TM592, 593
  500. Wu F594
  501. Wu Z595
  502. Yadav MKK559
  503. Yaghoubi S596
  504. Yahaya ZS402
  505. Yarahmadi A531, 597
  506. Yezli S598
  507. Yismaw YE162, 599
  508. Yon DK600
  509. Yuan CW1
  510. Yusuf H601
  511. Zakham F602, 603
  512. Zamagni G451
  513. Zhang H437, 604
  514. Zhang ZJ605
  515. Zielinska M606
  516. Zumla A102, 607
  517. Zyoud SHH24
  518. Zyoud SH608, 609
  519. Hay SI1, 2
  520. Stergachis A2, 8
  521. Sartorius B2, 12, 610
  522. Cooper BS12
  523. Dolecek C12, 252
  524. Murray CJL1, 2

Source: The Lancet Published:2024


Abstract

Background: Antimicrobial resistance (AMR) poses an important global health challenge in the 21st century. A previous study has quantified the global and regional burden of AMR for 2019, followed with additional publications that provided more detailed estimates for several WHO regions by country. To date, there have been no studies that produce comprehensive estimates of AMR burden across locations that encompass historical trends and future forecasts. Methods: We estimated all-age and age-specific deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 22 pathogens, 84 pathogen–drug combinations, and 11 infectious syndromes in 204 countries and territories from 1990 to 2021. We collected and used multiple cause of death data, hospital discharge data, microbiology data, literature studies, single drug resistance profiles, pharmaceutical sales, antibiotic use surveys, mortality surveillance, linkage data, outpatient and inpatient insurance claims data, and previously published data, covering 520 million individual records or isolates and 19 513 study-location-years. We used statistical modelling to produce estimates of AMR burden for all locations, including those with no data. Our approach leverages the estimation of five broad component quantities: the number of deaths involving sepsis; the proportion of infectious deaths attributable to a given infectious syndrome; the proportion of infectious syndrome deaths attributable to a given pathogen; the percentage of a given pathogen resistant to an antibiotic of interest; and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden attributable to and associated with AMR, which we define based on two counterfactuals; respectively, an alternative scenario in which all drug-resistant infections are replaced by drug-susceptible infections, and an alternative scenario in which all drug-resistant infections were replaced by no infection. Additionally, we produced global and regional forecasts of AMR burden until 2050 for three scenarios: a reference scenario that is a probabilistic forecast of the most likely future; a Gram-negative drug scenario that assumes future drug development that targets Gram-negative pathogens; and a better care scenario that assumes future improvements in health-care quality and access to appropriate antimicrobials. We present final estimates aggregated to the global, super-regional, and regional level. Findings: In 2021, we estimated 4·71 million (95% UI 4·23–5·19) deaths were associated with bacterial AMR, including 1·14 million (1·00–1·28) deaths attributable to bacterial AMR. Trends in AMR mortality over the past 31 years varied substantially by age and location. From 1990 to 2021, deaths from AMR decreased by more than 50% among children younger than 5 years yet increased by over 80% for adults 70 years and older. AMR mortality decreased for children younger than 5 years in all super-regions, whereas AMR mortality in people 5 years and older increased in all super-regions. For both deaths associated with and deaths attributable to AMR, meticillin-resistant Staphylococcus aureus increased the most globally (from 261 000 associated deaths [95% UI 150 000–372 000] and 57 200 attributable deaths [34 100–80 300] in 1990, to 550 000 associated deaths [500 000–600 000] and 130 000 attributable deaths [113 000–146 000] in 2021). Among Gram-negative bacteria, resistance to carbapenems increased more than any other antibiotic class, rising from 619 000 associated deaths (405 000–834 000) in 1990, to 1·03 million associated deaths (909 000–1·16 million) in 2021, and from 127 000 attributable deaths (82 100–171 000) in 1990, to 216 000 (168 000–264 000) attributable deaths in 2021. There was a notable decrease in non-COVID-related infectious disease in 2020 and 2021. Our forecasts show that an estimated 1·91 million (1·56–2·26) deaths attributable to AMR and 8·22 million (6·85–9·65) deaths associated with AMR could occur globally in 2050. Super-regions with the highest all-age AMR mortality rate in 2050 are forecasted to be south Asia and Latin America and the Caribbean. Increases in deaths attributable to AMR will be largest among those 70 years and older (65·9% [61·2–69·8] of all-age deaths attributable to AMR in 2050). In stark contrast to the strong increase in number of deaths due to AMR of 69·6% (51·5–89·2) from 2022 to 2050, the number of DALYs showed a much smaller increase of 9·4% (–6·9 to 29·0) to 46·5 million (37·7 to 57·3) in 2050. Under the better care scenario, across all age groups, 92·0 million deaths (82·8–102·0) could be cumulatively averted between 2025 and 2050, through better care of severe infections and improved access to antibiotics, and under the Gram-negative drug scenario, 11·1 million AMR deaths (9·08–13·2) could be averted through the development of a Gram-negative drug pipeline to prevent AMR deaths. Interpretation: This study presents the first comprehensive assessment of the global burden of AMR from 1990 to 2021, with results forecasted until 2050. Evaluating changing trends in AMR mortality across time and location is necessary to understand how this important global health threat is developing and prepares us to make informed decisions regarding interventions. Our findings show the importance of infection prevention, as shown by the reduction of AMR deaths in those younger than 5 years. Simultaneously, our results underscore the concerning trend of AMR burden among those older than 70 years, alongside a rapidly ageing global community. The opposing trends in the burden of AMR deaths between younger and older individuals explains the moderate future increase in global number of DALYs versus number of deaths. Given the high variability of AMR burden by location and age, it is important that interventions combine infection prevention, vaccination, minimisation of inappropriate antibiotic use in farming and humans, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050. Funding: UK Department of Health and Social Care's Fleming Fund using UK aid, and the Wellcome Trust. © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
Other Related Docs