Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Cascaded Learning With Generative Adversarial Networks for Low Dose Ct Denoising Publisher Pubmed



Ataei S1 ; Babyn P2 ; Ahmadian A3 ; Alirezaie J1
Authors

Source: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society# EMBS Published:2021


Abstract

CT machines can be tuned in order to reduce the radiation dose used for imaging, yet reducing the radiation dose results in noisy images which are not suitable in clinical practice. In order for low dose CT to be used effectively in practice this issue must be addressed. Generative Adversarial Networks (GAN) have been used widely in computer vision research and have proven themselves as a powerful tool for producing images with high perceptual quality. In this work we use a cascade of two neural networks, the first is a Generative Adversarial Network and the second is a Deep Convolutional Neural Network. The first network generates a denoised sample which is then fine-tuned by the second network via residue learning. We show that our cascaded method outperforms related works and more effectively reconstructs fine structural details in low contrast regions of the image. © 2021 IEEE.
Other Related Docs
5. Accurate Automatic Glioma Segmentation in Brain Mri Images Based on Capsnet, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society# EMBS (2021)
6. Atb-Net: A Novel Attention-Based Convolutional Neural Network for Predicting Full-Dose From Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
7. Deep Learning-Based Automated Delineation of Head and Neck Malignant Lesions From Pet Images, 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2020 (2020)
9. Deep Learning-Based Low-Dose Cardiac Gated Spect: Implementation in Projection Space Vs. Image Space, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
10. A Deep Learning Method for High-Quality Ultra-Fast Ct Image Reconstruction From Sparsely Sampled Projections, Nuclear Instruments and Methods in Physics Research# Section A: Accelerators# Spectrometers# Detectors and Associated Equipment (2022)
11. Standard-Dose Pet Reconstruction From Low-Dose Preclinical Images Using an Adopted All Convolutional U-Net, Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2021)
14. A Novel Attention-Based Convolutional Neural Network for Joint Denoising and Partial Volume Correction of Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)