Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Design and Performance Evaluation of Sipm-Based High-Resolution Dedicated Brain Positron Emission Tomography Scanner: A Simulation Study Publisher



Zare T1, 2 ; Sheikhzadeh P1, 3 ; Teimourian Fard B2 ; Ghafarian P4, 5 ; Ay MR1, 2
Authors

Source: Journal of Medical Physics Published:2024


Abstract

Purpose/Aim: The increasing population age highlights the critical need for early brain disease diagnosis, especially in disorders such as dementia. Consequently, a notable focus has been on developing dedicated brain positron emission tomography (PET) scanners, which offer higher resolution and sensitivity than whole-body PET scanners. This study aims to design and performance evaluation of an LYSO-based dedicated brain PET scanner. Materials and Methods: We developed a dedicated brain PET using Monte Carlo simulation based on cylindrical geometry. Each detector block consisted of a 23 × 23 array of 2 mm × 2 mm × 15 mm LYSO crystals coupled with SiPM. The performance of this scanner was evaluated based on the NEMA NU-2-2018 standard, focusing on analyzing various energy windows and coincidence time windows (CTWs). Results: The results demonstrated that the noise equivalent count rate (NECR) peaked at each CTW in the 408-680 keV energy window. In addition, increasing the CTWs from 3 ns to 10 ns resulted in a decrease of 9% in sensitivity and an increase of 63% in NECR. Furthermore, the study findings highlight that using a time-of-flight (TOF) resolution of 250 ps can substantially improve image contrast relative to non-TOF reconstruction. Conclusions: We conclude that employing a broader energy window and a narrower CTW can significantly enhance the scanner's performance regarding sensitivity and NECR. Furthermore, incorporating LYSO pixelated crystals with TOF information will facilitate the generation of high-resolution and high-contrast images. © 2024 Journal of Medical Physics.
Other Related Docs
9. Accurate Monte Carlo Modeling and Performance Evaluation of a Total-Body Pet Scanner, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
14. Generic High Resolution Pet Detector Block Using 12 × 12 Sipm Array, Biomedical Physics and Engineering Express (2018)
15. A Generic, Scalable, and Cost-Effective Detector Front-End Block for Pet, 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2017 - Conference Proceedings (2018)
18. A Multi-Purpose Clinical Pet Scanner With Dynamic Gantry Design, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)