Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Mri-Based Machine Learning for Determining Quantitative and Qualitative Characteristics Affecting the Survival of Glioblastoma Multiforme Publisher Pubmed



Jajroudi M1 ; Enferadi M2 ; Homayoun AA3 ; Reiazi R4
Authors

Source: Magnetic Resonance Imaging Published:2022


Abstract

Purpose: Our current study aims to consider the image biomarkers extracted from the MRI images for exploring their effects on glioblastoma multiforme (GBM) patients' survival. Determining its biomarker helps better manage the disease and evaluate treatments. It has been proven that imaging features could be used as a biomarker. The purpose of this study is to investigate the features in MRI and clinical features as the biomarker association of survival of GBM. Methods: 55 patients were considered with five clinical features, 10 qualities pre-operative MRI image features, and six quantitative features obtained using BraTumIA software. It was run ANN, C5, Bayesian, and Cox models in two phases for determining important variables. In the first phase, we selected the quality features that occur at least in three models and quantitative in two models. In the second phase, models were run with the extracted features, and then the probability value of variables in each model was calculated. Results: The mean of accuracy, sensitivity, specificity, and area under curve (AUC) after running four machine learning techniques were 80.47, 82.54, 79.78, and 0.85, respectively. In the second step, the mean of accuracy, sensitivity, specificity, and AUC were 79.55, 78.71, 79.83, and 0.87, respectively. Conclusion: We found the largest size of the width, the largest size of length, radiotherapy, volume of enhancement, volume of nCET, satellites, enhancing margin, and age feature are important features. © 2021 Elsevier Inc.
1. Machine Learning-Based Overall Survival Prediction in Gbm Patients Using Mri Radiomics, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
Experts (# of related papers)
Other Related Docs
12. Pet Image Radiomics Feature Variability in Lung Cancer: Impact of Image Segmentation, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
13. Mri Radiomic Features Harmonization: A Multi-Center Phantom Study, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)