Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Enhancement of Hypericin Nanoparticle-Mediated Sonoinduced Disruption of Biofilm and Persister Cells of Streptococcus Mutans by Dermcidin-Derived Peptide Dcd-1L Publisher Pubmed



Pourhajibagher M1 ; Parker S2 ; Pourakbari B3, 4 ; Valian NK5 ; Raoofian R6 ; Bahador A7, 8
Authors

Source: Photodiagnosis and Photodynamic Therapy Published:2023


Abstract

Background: Streptococcus mutans is considered a major significant contributor to dental caries and its effective removal is difficult due to the formation of biofilm. Therefore, the development of adjuvant therapeutic strategies with anti-biofilm properties is a promising approach. In the present study, we examined the effect of dermcidin-derived peptide DCD-1 L on the antibacterial activity of hypericin nanoparticle (HypNP)-mediated antimicrobial sonodynamic therapy (aSDT) against persister cells growing- and biofilm cultures of S. mutans. Materials and methods: Following synthesis and confirmation of HypNP, the fractional inhibitory concentration (FIC) index of HypNP and DCD-1 L was determined by checkerboard assay. Cellular uptake of HypNP-DCD-1 L and generation of endogenous reactive oxygen species (ROS) were assessed and followed by the determination of antimicrobial sonoactivity of HypNP-DCD-1 L against persister cells growing- and biofilm cultures of S. mutans. The water-insoluble extracellular polysaccharide (EPS) and expression of the gtfD, comDE, and smuT genes were then evaluated in persister cells growing- and biofilm cultures of S. mutans. Results: There was a synergistic activity in the combination of HypNP and DCD-1 L against S. mutans with an FIC index value of 0.37. The HypNP-DCD-1L-mediated aSDT also displayed the highest cellular uptake and endogenous ROS generation by bacterial cells. When biofilm and persister cells of S. mutans were treated with HypNP-DCD-1 L and subsequently exposed to ultrasound waves, 5.1 log and 3.8 log reductions, respectively, in bacterial numbers were observed (P<0.05). According to the data, EPS in both persister cells growing- and biofilm cultures of S. mutans were significantly decreased after exposure to the HypNP-DCD-1L-mediated aSDT (P<0.05). In addition, the quantitative real-time PCR data illustrated the high level of similarities in very low-expression profiles of the gtfD before and after all treated groups for persister cells. While, following HypNP-DCD-1L-mediated aSDT treatment, the expression levels of gtfD, comDE, and smuT were significantly lower in treated persister cells growing- and biofilm cultures of S. mutans in comparison with control groups (P<0.05). Conclusions: Combined, the results of this study indicate that ultrasound waves-activated HypNP-DCD-1 L can sonoinactivate S. mutans biofilms and persister cells, as well as reduce effectively pathogenicity potency of S. mutans. Hence, HypNP-DCD-1L-mediated aSDT may be proposed as a promising adjunctive therapeutic approach for dental caries. © 2023
Other Related Docs