Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Design and Performance Evaluation of High Resolution Small Animal Pet Scanner Based on Monolithic Crystal: A Simulation Study Publisher



Sanaat A1, 2 ; Zafarghandi MS1 ; Ay MR2, 3
Authors

Source: Journal of Instrumentation Published:2019


Abstract

Dedicated small-animal PET scanners functionality can be optimized by improving the sensitivity and spatial resolution of the scanner. Approximately most of the developed and commercially available small-animal PET scanners are equipped with pixelated scintillators; therefore, their spatial resolution is limited to the crystal pixel size. Complex fabrication, low-sensitivity, and disability in depth of interaction calculation (DOI) are the major disadvantages of pixelated crystals. However, monolithic scintillator crystals are known as one of the most commonly used substitutions, as they have higher sensitivity, DOI recognition, and lower cost. We already designed and implemented a dedicated small-animal PET scanner based on pixelated scintillator crystals and silicon photomultiplier (SiPM). In this study, we plan to present a new optimized design based on the monolithic crystal, with similar performance by the previous scanner. Then we would optimize the thickness of the monolithic crystals for animal PET scanners as a function of sensitivity and spatial resolution. All simulations were performed based on GEANT4, a validated Monte Carlo toolkit. We simulated a recently fabricated scanner with pixelated crystals and compared it with a simulated scanner based on an optimized monolithic crystal. The experimental setup used for comparison and validation is a small Animal PET consisting of ten pixelated modules. This study anticipates that by replacing a pixelated crystal (consist of 24 × 24 LYSO elements, and 2 × 2 ×10 mm3 crystal size) with a monolithic crystal (with 8 mm thickness and 50.2 × 50.2 entrance area), the average spatial resolution stays the same and sensitivity grows ∼ 17% in the center of AFOV and also the fabrication cost dives remarkably. Simulation reveals that although the depth of interaction DOI was not taken into consideration, the crystals with 6 mm thickness have acceptable spatial resolution (∼ 1.3 mm FWHM at the centre of the AFOV) and relatively good absolute sensitivity (∼ 1.6%). © 2019 IOP Publishing Ltd and Sissa Medialab.
Other Related Docs
5. Development and Preliminary Results of Xtrim-Pet, a Modular Cost-Effective Preclinical Scanner, Nuclear Instruments and Methods in Physics Research# Section A: Accelerators# Spectrometers# Detectors and Associated Equipment (2019)
13. Development of a Preclinical Pet System Based on Pixelated Lyso Crystals and Sipm Arrays, 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2017 - Conference Proceedings (2018)
15. Monte Carlo Optimization of Crystal Configuration for Pixelated Molecular Spect Scanners, Nuclear Instruments and Methods in Physics Research# Section A: Accelerators# Spectrometers# Detectors and Associated Equipment (2017)
17. Generic High Resolution Pet Detector Block Using 12 × 12 Sipm Array, Biomedical Physics and Engineering Express (2018)
18. A Generic, Scalable, and Cost-Effective Detector Front-End Block for Pet, 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2017 - Conference Proceedings (2018)
19. A Multi-Purpose Clinical Pet Scanner With Dynamic Gantry Design, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)