Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Modified Rifampin Nanoparticles: Increased Solubility With Slow Release Rate Publisher Pubmed



Farnia P1, 2 ; Velayati AA1 ; Mollaei S3 ; Ghanavi J1
Authors

Source: International Journal of Mycobacteriology Published:2017


Abstract

Background: Recent advances in nanotechnology-based drug delivery system have been shown to improve either antibacterial efficacy or pharmacokinetics behavior.The aim of this study was to design a rifampin nanoparticle (RIF-NP) which has a high loading capacity with the slow release profile. Material and Methods: The designed chitosan/gelatin/lecithin (Chg/L) RIF-NPs were prepared by multilamellar vesicle. Thereafter, the particle size, zeta potential, morphology, and release rate were investigated. To optimize the loading capacity and release profiles, different concentrations of lecithin were used. Results: Our results showed a correlation of lecithin concentration with size, zeta potential, and loading capacity of RIF-NPs. Increases in lecithin concentration (0.2-2.0 g) could cause a significant size reduction in NPs (250-150 nm); the amount of zeta potential (from 14 to 49 mV;P < 0.05) and loading capacity increases from 8% to 20% (P < 0.05). Designed NPs had slow drug release profile which was influenced by pH and lecithin concentration. The cumulative percentage of RIF released at pH 7.4 was approximately 93% up to 12 h. In overall, release profile was better than standard drug, even in various pH conditions (pH = 1, 3.4, and 7.4). The Chg/L-RIF NPs may be considered as a promising drug nanocarrier. Conclusions: These NPs release RIF in slow and constant rate, which effectively might eliminate the bacilli and prevent the formation of RIF-resistant bacilli. © 2017 The International Journal of Mycobacteriology.
Other Related Docs
11. Lipid-Based Nanoparticles for Drug Delivery Systems, Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery (2018)
16. Curcumin-Loaded Chitosan-Agarose-Montmorillonite Hydrogel Nanocomposite for the Treatment of Breast Cancer, 27th National and 5th International Iranian Conference of Biomedical Engineering# ICBME 2020 (2020)