Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Hard Tissue Formation in Pulpotomized Primary Teeth in Dogs With Nanomaterials Mcm-48 and Mcm-48/Hydroxyapatite: An in Vivo Animal Study Publisher Pubmed

Summary: Study shows nanomaterials MCM-48 and MCM-48/HA induce hard tissue formation in dog teeth pulpotomy, comparable to MTA. #DentalHealth #Nanotechnology

Talebi S1 ; Nourbakhsh N2 ; Talebi A3 ; Nourbakhsh AA4 ; Haghighat A5 ; Manshayi M6 ; Bakhsheshi HR7 ; Karimi R7 ; Nazeri R8 ; Mackenzie KJD9
Authors

Source: BMC Oral Health Published:2024


Abstract

Background: This animal study sought to evaluate two novel nanomaterials for pulpotomy of primary teeth and assess the short-term pulpal response and hard tissue formation in dogs. The results were compared with mineral trioxide aggregate (MTA). Methods: This in vivo animal study on dogs evaluated 48 primary premolar teeth of 4 mongrel female dogs the age of 6–8 weeks, randomly divided into four groups (n = 12). The teeth underwent complete pulpotomy under general anesthesia. The pulp tissue was capped with MCM-48, MCM-48/Hydroxyapatite (HA), MTA (positive control), and gutta-percha (negative control), and the teeth were restored with intermediate restorative material (IRM) paste and amalgam. After 4–6 weeks, the teeth were extracted and histologically analyzed to assess the pulpal response to the pulpotomy agent. Results: The data were analyzed using the Kruskal‒Wallis, Fisher’s exact, Spearman’s, and Mann‒Whitney tests. The four groups were not significantly different regarding the severity of inflammation (P = 0.53), extent of inflammation (P = 0.72), necrosis (P = 0.361), severity of edema (P = 0.52), extent of edema (P = 0.06), or connective tissue formation (P = 0.064). A significant correlation was noted between the severity and extent of inflammation (r = 0.954, P < 0.001). The four groups were significantly different regarding the frequency of bone formation (P = 0.012), extent of connective tissue formation (P = 0.047), severity of congestion (P = 0.02), and extent of congestion (P = 0.01). No bone formation was noted in the gutta-percha group. The type of newly formed bone was not significantly different among the three experimental groups (P = 0.320). Conclusion: MCM-48 and MCM-48/HA are bioactive nanomaterials that may serve as alternatives for pulpotomy of primary teeth due to their ability to induce hard tissue formation. The MCM-48 and MCM-48/HA mesoporous silica nanomaterials have the potential to induce osteogenesis and tertiary (reparative) dentin formation. © The Author(s) 2024.
Other Related Docs