Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Gray Matter Mri Differentiates Neuromyelitis Optica From Multiple Sclerosis Using Random Forest Publisher Pubmed



Eshaghi A1, 2, 3 ; Wottschel V1, 2 ; Cortese R1 ; Calabrese M4, 5 ; Sahraian MA3 ; Thompson AJ3, 6 ; Alexander DC2 ; Ciccarelli O1, 6, 7
Authors

Source: Neurology Published:2016


Abstract

Objective: We tested whether brain gray matter (GM) imaging measures can differentiate between multiple sclerosis (MS) and neuromyelitis optica (NMO) using random-forest classification. Methods: Ninety participants (25 patients with MS, 30 patients with NMO, and 35 healthy controls [HCs]) were studied in Tehran, Iran, and 54 (24 patients with MS, 20 patients with NMO, and 10 HCs) in Padua, Italy. Participants underwent brain T1 and T2/fluid-attenuated inversion recovery MRI. Volume, thickness, and surface of 50 cortical GM regions and volumes of the deep GM nuclei were calculated and used to construct 3 random-forest models to classify patients as either NMO or MS, and separate each patient group from HCs. Clinical diagnosis was the gold standard against which the accuracy was calculated. Results: The classifier distinguished patients with MS, who showed greater atrophy especially in deep GM, from those with NMO with an average accuracy of 74% (sensitivity/specificity: 77/72; p < 0.01). When we used thalamic volume (the most discriminating GM measure) together with the white matter lesion volume, the accuracy of the classification of MS vs NMO was 80%. The classifications of MS vs HCs and NMO vs HCs achieved higher accuracies (92% and 88%). Conclusions: GM imaging biomarkers, automatically obtained from clinical scans, can be used to distinguish NMO from MS, even in a 2-center setting, and may facilitate the differential diagnosis in clinical practice. Classification of evidence: This study provides Class II evidence that GM imaging biomarkers can distinguish patients with NMO from those with MS. © 2016 American Academy of Neurology.
Other Related Docs