Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Highly Evolvable Malaria Vectors: The Genomes of 16 Anopheles Mosquitoes Publisher Pubmed



Neafsey DE1 ; Waterhouse RM2, 3, 4, 5 ; Abai MR6 ; Aganezov SS7 ; Alekseyev MA7 ; Allen JE8 ; Amon J9 ; Arca B10 ; Arensburger P11 ; Artemov G12 ; Assour LA13 ; Basseri H6 ; Berlin A1 ; Birren BW1 Show All Authors
Authors
  1. Neafsey DE1
  2. Waterhouse RM2, 3, 4, 5
  3. Abai MR6
  4. Aganezov SS7
  5. Alekseyev MA7
  6. Allen JE8
  7. Amon J9
  8. Arca B10
  9. Arensburger P11
  10. Artemov G12
  11. Assour LA13
  12. Basseri H6
  13. Berlin A1
  14. Birren BW1
  15. Blandin SA14, 15
  16. Brockman AI16
  17. Burkot TR17
  18. Burt A18
  19. Chan CS2, 3
  20. Chauve C19
  21. Chiu JC20
  22. Christensen M8
  23. Costantini C21
  24. Davidson VLM22
  25. Deligianni E23
  26. Dottorini T16
  27. Dritsou V24
  28. Gabriel SB25
  29. Guelbeogo WM26
  30. Hall AB27
  31. Han MV28
  32. Hlaing T29
  33. Hughes DST8, 30
  34. Jenkins AM31
  35. Jiang X27, 32
  36. Jungreis I2, 3
  37. Kakani EG33, 34
  38. Kamali M35
  39. Kemppainen P36
  40. Kennedy RC37
  41. Kirmitzoglou IK16, 38
  42. Koekemoer LL39
  43. Laban N40
  44. Langridge N8
  45. Lawniczak MKN16
  46. Lirakis M41
  47. Lobo NF42
  48. Lowy E8
  49. Maccallum RM16
  50. Mao C43
  51. Maslen G8
  52. Mbogo C44
  53. Mccarthy J11
  54. Michel K22
  55. Mitchell SN33
  56. Moore W45
  57. Murphy KA20
  58. Naumenko AN35
  59. Nolan T16
  60. Novoa EM2, 3
  61. Oloughlin S18
  62. Oringanje C45
  63. Oshaghi MA6
  64. Pakpour N46
  65. Papathanos PA16, 24
  66. Peery AN35
  67. Povelones M47
  68. Prakash A48
  69. Price DP49, 50
  70. Rajaraman A19
  71. Reimer LJ51
  72. Rokas A52, 53
  73. Russell TL17
  74. Sagnon N26
  75. Sharakhova MV35
  76. Shea T1
  77. Simao FA4, 5
  78. Simard F21
  79. Slotman MA54
  80. Somboon P55
  81. Stegniy V12
  82. Struchiner CJ56, 57
  83. Thomas GWC58
  84. Tojo M59
  85. Topalis P23
  86. Tubio JMC60
  87. Unger MF42
  88. Vontas J41
  89. Walton C36
  90. Wilding CS61
  91. Willis JH62
  92. Wu YC2, 3, 63
  93. Yan G64
  94. Zdobnov EM4, 5
  95. Zhou X53
  96. Catteruccia F33, 34
  97. Christophides GK16
  98. Collins FH42
  99. Cornman RS62
  100. Crisanti A16, 24
  101. Donnelly MJ51, 65
  102. Emrich SJ13
  103. Fontaine MC42, 66
  104. Hahn MW58, 67, 68
  105. Hansen IA49, 50
  106. Howell PI69
  107. Kafatos FC16
  108. Kellis M2, 3
  109. Lawson D8
  110. Louis C23, 24, 41
  111. Luckhart S46
  112. Muskavitch MAT31, 70
  113. Ribeiro JM71
  114. Riehle MA45
  115. Sharakhov IV27, 35
  116. Tu Z27, 32
  117. Zwiebel LJ72
  118. Besansky NJ42

Source: Science Published:2015


Abstract

Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ∼100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. © 2015, american association for the advancement of science. All rigths reserved.
Other Related Docs
5. Bio-Ecology of Malaria Vectors in an Endemic Area, Southeast of Iran, Asian Pacific Journal of Tropical Medicine (2016)
10. Climate Change and the Risk of Malaria Transmission in Iran, Journal of Medical Entomology (2020)