Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Deep Learning-Based Automatic Detection of Tuberculosis Disease in Chest X-Ray Images Publisher



Showkatian E1 ; Salehi M1 ; Ghaffari H1 ; Reiazi R1, 2 ; Sadighi N3
Authors

Source: Polish Journal of Radiology Published:2022


Abstract

Purpose: To train a convolutional neural network (CNN) model from scratch to automatically detect tuberculosis (TB) from chest X-ray (CXR) images and compare its performance with transfer learning based technique of different pre-trained CNNs. Material and methods: We used two publicly available datasets of postero-anterior chest radiographs, which are from Montgomery County, Maryland, and Shenzhen, China. A CNN (ConvNet) from scratch was trained to automatically detect TB on chest radiographs. Also, a CNN-based transfer learning approach using five different pre-trained models, including Inception_v3, Xception, ResNet50, VGG19, and VGG16 was utilized for classifying TB and normal cases from CXR images. The performance of models for testing datasets was evaluated using five performances metrics, including accuracy, sensitivity/recall, precision, area under curve (AUC), and F1-score. Results: All proposed models provided an acceptable accuracy for two-class classification. Our proposed CNN architecture (i.e., ConvNet) achieved 88.0% precision, 87.0% sensitivity, 87.0% F1-score, 87.0% accuracy, and AUC of 87.0%, which was slightly less than the pre-trained models. Among all models, Exception, ResNet50, and VGG16 provided the highest classification performance of automated TB classification with precision, sensitivity, F1-score, and AUC of 91.0%, and 90.0% accuracy. Conclusions: Our study presents a transfer learning approach with deep CNNs to automatically classify TB and normal cases from the chest radiographs. The classification accuracy, precision, sensitivity, and F1-score for the detection of TB were found to be more than 87.0% for all models used in the study. Exception, ResNet50, and VGG16 models outperformed other deep CNN models for the datasets with image augmentation methods. © Pol J Radiol 2022.
Other Related Docs
14. Segmentation of Covid-19 Pneumonia Lesions: A Deep Learning Approach, Medical Journal of the Islamic Republic of Iran (2020)
20. Application of Explainable Convolutional Neural Networks on the Differential Diagnosis of Covid-19 and Pneumonia Using Chest Radiograph, Proceedings of 2023 6th International Conference on Pattern Recognition and Image Analysis# IPRIA 2023 (2023)