Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Misclassification Adjustment of Family History of Breast Cancer in a Case-Control Study: A Bayesian Approach Publisher Pubmed



Moradzadeh R1 ; Mansournia MA1 ; Baghfalaki T2 ; Ghiasvand R3 ; Nooridaloii MR4 ; Holakouienaieni K1
Authors

Source: Asian Pacific Journal of Cancer Prevention Published:2016


Abstract

Background: Misreporting self-reported family history may lead to biased estimations. We used Bayesian methods to adjust for exposure misclassification. Materials and Methods: A hospital-based case-control study was used to identify breast cancer risk factors among Iranian women. Three models were jointly considered; an outcome, an exposure and a measurement model. All models were fitted using Bayesian methods, run to achieve convergence. Results: Bayesian analysis in the model without misclassification showed that the odds ratios for the relationship between breast cancer and a family history in different prior distributions were 2.98 (95% CRI: 2.41, 3.71), 2.57 (95% CRI: 1.95, 3.41) and 2.53 (95% CRI: 1.93, 3.31). In the misclassified model, adjusted odds ratios for misclassification in the different situations were 2.64 (95% CRI: 2.02, 3.47), 2.64 (95% CRI: 2.02, 3.46), 1.60 (95% CRI: 1.07, 2.38), 1.61 (95% CRI: 1.07, 2.40), 1.57 (95% CRI: 1.05, 2.35), 1.58 (95% CRI: 1.06, 2.34) and 1.57 (95% CRI: 1.06, 2.33). Conclusions: It was concluded that self-reported family history may be misclassified in different scenarios. Due to the lack of validation studies in Iran, more attention to this matter in future research is suggested, especially while obtaining results in accordance with sensitivity and specificity values.
Other Related Docs
9. Bayesian Methods for Clinicians, Medical Journal of the Islamic Republic of Iran (2020)