Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Non-Small Cell Lung Carcinoma Histopathological Subtype Phenotyping Using High-Dimensional Multinomial Multiclass Ct Radiomics Signature Publisher Pubmed



Khodabakhshi Z1 ; Mostafaei S2, 3 ; Arabi H4 ; Oveisi M5, 6 ; Shiri I4 ; Zaidi H4, 7, 8, 9
Authors

Source: Computers in Biology and Medicine Published:2021


Abstract

Objective: The aim of this study was to identify the most important features and assess their discriminative power in the classification of the subtypes of NSCLC. Methods: This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma (SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 bootstrapping samples based on the selected features to classify four main subtypes of NSCLC. Results: The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the wrapper algorithm. Conclusions: Our CT radiomics approach demonstrated impressive potential for the classification of the four main histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and precision medicine. © 2021 The Author(s)
Other Related Docs
4. Lung Cancer Recurrence Prediction Using Radiomics Features of Pet Tumor Sub-Volumes and Multi-Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
7. Pet Image Radiomics Feature Variability in Lung Cancer: Impact of Image Segmentation, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
8. Non-Invasive Pnet Grading Using Ct Radiomics and Machine Learning, Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (2025)
16. Machine Learning-Based Overall Survival Prediction in Gbm Patients Using Mri Radiomics, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
18. Cardiac Pattern Recognition From Spect Images Using Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
19. A Decision Support System for Mammography Reports Interpretation, Health Information Science and Systems (2020)
20. Combat Harmonization of Image Reconstruction Parameters to Improve the Repeatability of Radiomics Features, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)