Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Pet Radiomics-Based Lymphovascular Invasion Prediction in Lung Cancer Using Multiple Segmentation and Multi-Machine Learning Algorithms Publisher Pubmed



Hosseini SA1, 2 ; Hajianfar G3 ; Ghaffarian P4, 5 ; Seyfi M6, 7 ; Hosseini E8 ; Aval AH9 ; Servaes S1, 2 ; Hanaoka M10 ; Rosaneto P1, 2 ; Chawla S10 ; Zaidi H11, 12, 13, 14 ; Ay MR6, 7
Authors

Source: Physical and Engineering Sciences in Medicine Published:2024


Abstract

The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering new avenues for personalized treatment strategies and improving patient outcomes. One hundred and twenty-six patients with NSCLC were enrolled in this study. Various automated and semi-automated PET image segmentation methods were applied, including Local Active Contour (LAC), Fuzzy-C-mean (FCM), K-means (KM), Watershed, Region Growing (RG), and Iterative thresholding (IT) with different percentages of the threshold. One hundred five radiomic features were extracted from each region of interest (ROI). Multiple feature selection methods, including Minimum Redundancy Maximum Relevance (MRMR), Recursive Feature Elimination (RFE), and Boruta, and multiple classifiers, including Multilayer Perceptron (MLP), Logistic Regression (LR), XGBoost (XGB), Naive Bayes (NB), and Random Forest (RF), were employed. Synthetic Minority Oversampling Technique (SMOTE) was also used to determine if it boosts the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Our results indicated that the combination of SMOTE, IT (with 45% threshold), RFE feature selection and LR classifier showed the best performance (AUC = 0.93, ACC = 0.84, SEN = 0.85, SPE = 0.84) followed by SMOTE, FCM segmentation, MRMR feature selection, and LR classifier (AUC = 0.92, ACC = 0.87, SEN = 1, SPE = 0.84). The highest ACC belonged to the IT segmentation (with 45 and 50% thresholds) alongside Boruta feature selection and the NB classifier without SMOTE (ACC = 0.9, AUC = 0.78 and 0.76, SEN = 0.7, and SPE = 0.94, respectively). Our results indicate that selection of appropriate segmentation method and machine learning algorithm may be helpful in successful prediction of LVI in patients with NSCLC with high accuracy using PET radiomics analysis. © The Author(s) 2024.
Other Related Docs
4. Lymphovascular Invasion Prediction in Lung Cancer Using Multi-Segmentation Pet Radiomics and Multi-Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
5. Robust Versus Non-Robust Radiomic Features: Machine Learning Based Models for Nsclc Lymphovascular Invasion, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
6. Pet Image Radiomics Feature Variability in Lung Cancer: Impact of Image Segmentation, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
7. Mri Radiomic Features Harmonization: A Multi-Center Phantom Study, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
9. Machine Learning-Based Overall Survival Prediction in Gbm Patients Using Mri Radiomics, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
16. Lung Cancer Recurrence Prediction Using Radiomics Features of Pet Tumor Sub-Volumes and Multi-Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)